Programming chemistry in DNA addressable bioreactors
Supplementary information

Harold Fellermann and Luca Cardelli

Appendix A: Grammar and equivalence relations

States:
S:=0!SoS ! x:P
P:=0!P+PiqCP>iq!im

g:=s!s" >s"

So(S08")=(S085)08"
SoS8 =808
Sof=S

P+(P +PY=P+P)+P
P+P =P +P
P+0=P
@+ (g2 +a3) = (@1 + q2) + g3
Nn+eR=¢+aq
g+o=gq

51+ (82 + 83) = (51 + 52) + 83

8§51+ S2 =82+ 51
S+O=s
z;: Pox;j:Pl=x;: P+ P

SlESQ
50515505’2
PlEPQ
z, Pr=z;: Py
PlEPQ
P—i—PlEP—I—PQ
q1 = q2
C+ta=q+q
S1 = S92
s* 451 = 5"+ 59
5] =85
s> st =85> 8"
5] =55
s* >8] =5 sh
PlEPQ
TFCPIY=q"CP)
U=¢

GiCPY>=¢qCPD

Transitions:
(1)
2) ST 85 + s8] — s (38)
3 s+s — s’
3) s+ (s +t)PY— (s"+t)c P (39)
q _|_ q/ N q//
40
©) (+d)CP>— ¢"CPD (40)
(7)
(8) PP (32)
(9) P+P'— P + P’
P— P
) ey W
P— P (34)
(12) x;: P—ax;: P
(13) S —
35
(14) SOS”_>SIOS// ()
I1:5—9
(15) I:S08— 8508 (50)
(16) p=p P p pl = p
(17) P— P (36)
S = S/ S/ S// S// = S///
(18) T ENEY)
(19) 0 feed@mit), o . Cvm; D (41)
(20) 0 feed_tag(z,s,v) T s (42)
% move(s,z,z) .
(21) x:(s+¢")CPD z:(s+¢")CPD
(43)
(22) g g movelemd), (44)
(23) x:s—}—q*((P))tig(f)—)x:(s—kq*)@P)) (45)
fuse(z
(24) x:qTC(PD%—q;@P’D#a::(qi‘—l-q;)C(PJrP'))
(46)
(25) P RNy (47)
(26) z: P YA, py (48)
burst(z
(27) r:¢"CP) urst(z) r:q"C Y+ P (49)

Programs:
mi=¢€ ! I;m (51)
e T (52) S — S, <7T,S/> — S” (57)
T =
1
(I; 7T)§7T, =1 (7T§7rl) (53) <7T, S>/ 7 S/ 7
(e.8) — S (54) (5 —5 5—=5 (58)
(r, 8"y — S I1:5 — 35" (r, 5) — S
’ : (55) S=9" (m,S) — 5’ S = 8"
(I;m,Sy — S (59)
) <7 S,> s <7'r7 S//> NN
i (56)
(I;7,S") — S
Appendix B: Proofs
Proof of Lemma 1
We prove the statement:
(m,8) — 8§ = (r,508)— 5085 (60)

Given that there exists an inference tree that derives the clause (m,S) — S’, we show that there exists
a parallel inference tree that derives <7T, SoS > — S0 S. The statement is proven by induction over the
structure of these derivation.

Proof:

A.

B.

Assume that (7, S) — S’ was derived by (54) in the last step. Hence, m = € and S’ = S. It trivially
follows that (€, 50 S) — S oS, as axiom (54) holds for any state.

Assume that (7, S) — S’ was derived by (55) in the last step. Hence, 7 = I'; .

(TS S IS — S
(I;n', Sy — &

(55)

We have as induction hypothesis that (7/,S”) — §' = (7/,5” 0 §) — §' 0 S. We can then use
rule (55) to derive:

I1:5— 95"
(n/,8"05) — 508 I:S085 —5"08
(I;n',S08) — 508

(50)

(55)

Hence, if <7r’, S" o §> — 5" 0 S is derivable, <I; ', S o §> — 5’0 S is derivable by induction.

. Assume that (7, S) — S’ was derived by (56) in the last step. Hence, 7 = I; 7.

(n',8) — 5’
(I;n',S) — &

(56)
We have as induction hypothesis that (7/,S) — 5" = (7/,5085) — S$"0 S. Rule (56) holds for
any state, thus we can derive, with S substituted by S o S:

(n/,5085) — S§'0 8
(I;n',S0S) — 508

(56)

Hence, if <7T’, S o S> — S0 S is derivable, <I; 7', S o 5’> — S0 S is derivable by induction.

D. Assume that (7,S) — S’ was derived by (57) in the last step.

S — 5" (r, 8"y — 5’
(m,S) — 5’

(57)

We have as induction hypothesis that (r,5”) — §" = (7,5"0S5) — 5’0 5. We can then use
rule (35) to derive:

S— 5"
So0S8—S5"08 (r,8"08) — S0 8§
(m,808) — §'0 S

(35)

(57)

Hence, if (7,5" 0 S) — S"0 S is derivable, (w,S 0 S) — S’ o S is derivable by induction.
E. Assume that (r,S) — S’ was derived by (58) in the last step.

(m,S) — S S’ — 8
(m,S) — 5’

(58)

We have as induction hypothesis that (7,S) — 8" = (7,50 5) — 5”0 5. Again, we can use
rule (35) to derive:
S — 8
(r,508) — "0 S 5”08 — S80S
<7T,SO§> — 808

(35)

(58)

Hence, if <7r, So 5’> — §" 0 S is derivable, <7r, So 5’> — 5’0 S is derivable by induction.
F. Finally, assume that (7, S) — S’ was derived by (59) in the last step.

S = S// <7_l,7 S//) SN S/// S/// = S/
(m,S) — &

(59)

We have as induction hypothesis that (7, S”) — S — <7r, S" o 5} — 8" 0 S. Thus, we can infer:

S=5"
SoS=5"08

S///ES/
(r,8"08) — 8”08 S5"o8=508
<7T,SO§>—>S/OS

(19) (19)

(59)

Hence, if <7r, S" o 5’> — S§" 0 S is derivable, then <7r, S o S‘> — 8’0 S is derivable by induction.

Proof of Lemma 2

We prove the statement:
(.8) =8 A (5S)— 8 = (win"S) — 5" (61)

Proof: Again, the proof is performed inductively over the structure of the derivation, in particular the
derivation of the clause (n’, S) — S’ for arbitrary derivations of the clause (7", S") — S”.

A. Assume that (7', S) — S’ was derived by (54) in the last step. Hence, 7/ = ¢ and S’ = S.
(€,8) — S (54)

For any 7" with (7", S") — S”, we then have (7", 5"y — §" = (e; 7", 5") — S” because ¢; 7" = 7"
by definition of ‘;” among programs.

/

. Assume that (7', S) — S’ was derived by (55) in the last step. Hence, 7/ = I;7”". As induction
hypothesis we have that (7"; 7" S") — S” is derivable for any 7”. We can then infer that
(" 7" 8" — §” I1:S— 9
<I; 7_[_///;71_//7 S> — S//

(55)

Hence, if (7"”; 7", S’y — S” is derivable, we know by induction that (7’; 7", S) — S” is derivable.

/

. Assume that (7', S) — S’ was derived by (56) in the last step. Hence, 7/ = ;7. We have as
induction hypothesis that (7”; 7", S’y — S” is derivable for any 7. We can then infer that

<7T///; " S> Y

56
<I; 7T///;7T”,S> NN (56)

Hence, if (7"”; 7", S) — S is derivable, we know by induction that (7'; 7", S) — S” is derivable.

. Assume that (7', S) — S was derived by (57) in the last step. As induction hypothesis we have that
(n's 7", 8"y — S” is derivable for any 7. We can then infer that
S~ <7‘r" ' S///> g

(r';7", S) — 5"

(57)

Hence, if (7'; 7", S"") — S” is derivable, we know by induction that (7’; 7", S) — S” is derivable.
. Assume that (7/,S) — S’ has been derived by (58) in the last step:

(n/,8) — S S — 9
(', S) — 5’

(58)
We have the second hypothesis (7”,5") — S”, and we need to show that (z';7”,S) — S”. By
second hypothesis and (57) with S — S’ we obtain:

S — 9 (z", 8" — 8"
(n",8) — 5"

(57)

Hence, if we have as induction hypothesis that (7/,S) — S and (7”,5) — S” then we can follow
(n's7”,S) — S”.

. Finally, assume that (7’,S) — S” was derived by (59) in the last step:

SES() <7T,,SQ> —>Sl Sl =9
(', S) — 9’

(59)

We are in the case (n/,Sy) — S1 with S = Sp and S; = S’. Our second hypothesis is that
(n",8") — 8", and we need to show that (n/;7”,S) — S”. By (59) we then have also that
(r",S1) — S

Si=8 (a",8) — 5"
(7", S1) — 8"

(59)

By induction hypothesis we have that (7’,Sg) — S; and (7", 51) — S = («/;7",Sy) — S”".
By (59) again, (n';7”,S) — S”.

Proof of Theorem 3

Proof: by induction over the structure of S.

A. Case S =

0.

This holds in the initial state. The program to create S =0 is e: (e, 0) — 0.

B. Case S =

S0 8" with &, 5" € wt (Mmin)-

By induction, there exist programs «’ and «” such that (7/,0) — S’ and (7”,0) — S”. Lemma
1 then implies that (7/,0 0 0) — S’ o, and (7", 5" o)) — 5" 0 §”. It follows with lemma 2 that

(i 0o

(59).

0y — S’08". But Do) =0 and S' 0 S” = S, hence (7'; 7", 0) — S due to inference rule

C. Case S=ux;: P.

C.1. Subcase P = 0.
This holds in the initial state. The program to create S = z; : 0 is e: (¢,0)) — x; : 0.

C.2. Subcase P = P’ + P”.
This case can be reduced to case B. by means of the distributive relation (18): z; : P’ + P" =
z;: Plox;: P".

C.3. Subcase P = qC P’) with d(P’) = 0.

C.3.1.

C.3.2.

C.3.3.

C.3.4.

C.3.5.

Subsubcase P = 0).

This is achieved by the program = = feed(z;, m,0); transport(z;, z;, x, o) for arbitrary
m e ./\/l, IS £feed, T € Efeeditag, ceT.

Subsubcase P = (¢ m;).

This is achieved by the program m = feed(z;, m;, 1); transport(z;, z;, zx, o) for x; € Leeea,
T € Efeeditag, oceT.

Subsubcase P = C sp D.

Since d(s D) = 2, we have to show that z; : (sg D & W (Ilin). Observe that feed
and feed_tag either raise the nesting level of a state from 0 to 1, or leave it invariant if it
was higher than 1. The instructions tag, move and fuse leave the nesting level unaltered,
whereas flush reduces the nesting level to 0 or leaves it invariant. Therefore, the instruction
set Imin does not contain any instruction that would increase the nesting level from 1 to 2.
Therefore, S = x; : C s D is not constructable from 0.

Subsubcase P = P’ + P").

By induction, there exists a program 7 such that (7,0) — z; : ¢ P’ Doz : ¢ P”). Then,
for some zy, € Leeed tag, 0 € T, the program 7; 7’ will produce S, where 7’ is the following
program:

z; :CP' Yoxj: CP"D

feed_tag(zy,o,1) z; i (P Yoxj: (P " Youwy:0
move(z, Zj,0) ;i (P Yox;: (P D+0o
tag(z;) z;: CP'Yoxj:oC P")
move(z;, T, o) z;: (P y+aCP")

fuse(z;) z;:oCP +P"p
feed_tag(zg, o > 0,1) z; 0P +P"Yoxp:0>0
move(xy, x;, 0 >0, 1) zi:oCP +P'y4+o0p>0

z; (P +P"y

Subsubcase P = (s + q)C P’ D.
By induction, there exists a program 7 such that (m,(}) — z; : gC P’ . Then, for any

Tk € Leeed tag, the program m; " will produce S, where 7’ is the program:

x; :qUP)Y
feed_tag(z;, sk, 1) zi:qCP Yoxj: sy
move(z;, T;, Sk) Ti:Sk+qUP)
tag(sy) zi: (sg+q)CP)Y

C.4. Subcase P = m;.
We have to show that z; : m; & w' (Ilmin). First, observe that d(z; : mj) = 0. The only way to
introduce m; is by means of the command feed(z;, m;, 1) which will result in a nesting level of
1. As discussed in subcase C.3.3., the only means to decrease the nesting level is by means of
the instruction flush. However, flush will transform the state z; : ¢ m; D into the empty state,

which is not equivalent to S. Thus, there is no program in Il able to generate S = z; : m;.
Therefore, S & wt (Umin)-

C.5. Subcase P = sy.
This is achieved by the program 7 = feed_tag(x;, s, 1); move(z;, z;,), for any x;, € Lced tag-

Proof of Theorem 4

Proof: The proof is identical to the one of theorem 3, where subsubcase C.3.3. is replaced by the more
general subsubcase:

C.3.3’ Subsubscase P = ¢ P') with d(P’) >0, P # P'+ P", and P # m;.
By induction, there exists a program 7 € Ilwrap, such that (r,0) — x; : P’ for x; € Lyrap.in. The
desired state is obtained by the program m;7’, where 7’ is the program

T P’
wrap(zj, rx) T CP'Y
transport(zy, x;, x;,0) xz;: CP'Y

where zj, € »erap,outa T € 'Cfeed,tag, oeT.

Proof of Theorem 5

Proof: The proof is identical to the one of theorem 4 where case C.4. is replaced by:

C.4’ Case P =mj.
By induction, there exists a program 7 € Ilpurst, such that (m,0) — z; : o m; D. The desired state
is obtained by the program ;n’, where 7’ is the program

xi:oCm; D
burst(z;) x; o D+ m;
move(z;, Tk, o) xiimjoxy:oC)

Proof of Theorem 6

Proof: Again, we proof the theorem by induction over the structure of S.

A. Case S = 0.
Nothing needs to be done in this case: {(e,0) — 0.

B. Case S =50 5".
Just as in the proof for theorem 3, we know by induction that there exist 7/, 7" such that (', S") — 0
and (7", S5") — (. If follows through lemmas 1 and 2 that (7';7”,5" 0 S") — 0.

C. Case S=u; : P.
C.1. Subcase P = 0.

Nothing needs to be done in this case: {e,0) — 0.

C.2. Subcase P = P' + P".
This is structurally equivalent to x; : P’ o x; : P” and is therefore reduced to case B.

C.3. Subcase P = qC P’).
C.3.1. Subsubcase g = ¢.

z;: CPY
feed_tag(z;,0) zi:CPYoxj:o
move(x;, T, o) x;:0+CP)
tag(z;) x; :oCP)Y

This reduces the problem to subsubcase C.3.2.

C.3.2. Subsubcase ¢ = s; + ¢'.
For z; € Laush, the following program resets the state:

zi: (sg+q)CPY
move(z;, j, Si) zj: (sp +q)CPD
flush(z;) 0

C.4. Subcase P = mj.
If x; € Laush, the program flush(x;) will reset the state. Likewise, if ; € Lwrap_in, the program
wrap(z;, x;) will transform the state into x; : ¢ m; D for any ; € Lwrap out and reduces the
problem to subcase C.3.1.. On the other hand, if z; ¢ Laush U Lwrap_in, We have to show that
S is not an element of w™(Ily). Note that all instructions feed, feed_tag tag, move, burst
leave x; : m; invariant under transition. Thus, there is no sequence of instructions that would
transform z; : m; into the empty state. Therefore, x; : m; & w™(Ily) for z; € Laush U Lwrap._in-

C.5. Subcase P = sg.
For z; € Laush, the following program resets the state:

i Sk
move(z;, T, Sk) Tj Sk

flush(z;) 0

